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A multineuron interaction model (RS model) with an energy function given by 
the product of the squared distances in phase space between the state of the net 
and the stored patterns is studied in detail within a mean-field approach. Two 
limits are considered: when the patterns and antipatterns are stored (as in the 
Hopfield model), PAS case, and when only the patterns are taken into account, 
OPS case. The T= 0 solutions for the proper memories are exactly obtained for 
all finite values of ~, as a consequence of the energy function: whenever one of 
the overlaps is exactly one the corresponding equations decouple and no con- 
figuration average is required. Special interest is focused on the OPS situation, 
which presents a peculiar phase space topology. On the other hand, the PAS 
configuration recovers the Hopfield model in the appropriate limit, while 
keeping associative memory abilities far beyond the critical values of other 
models when the full Hamiltonian is considered. 

KEY WORDS: Neural networks; multineuron interaction. 

1. I N T R O D U C T I O N  

Connected arrays of binary spins are one possible way to idealize neural 
systems (1'21 and the main objectives of such systems are (i) to understand 
storage, retrieval, and processing of information in the brain and hence 
other complex functions such as creation, intelligence, logical manipula- 
tion, etc.; and (ii)the design of computers capable of executing these 
complex functions. 

The determinant characteristic of human memory is to be content- 
addressable, i.e., the necessary stimulus required to retrieve a pattern is a 
portion of its information, in contrast to the physical bit address of a 
variable in an ordinary computer. The brain, where the information is 
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stored, is composed of neurons that may or not emit electric signals 
through their axons to the dendrites of other neurons. ~3) Both axons and 
dendrites may extend to macroscopic scales and, depending on the region 
of the brain in which the neurons are located, they are so richly branched 
that the network resembles an entanglement of filaments. A way to model 
such an associative memory system is to consider a network of infinite- 
range interacting binary spins (S i=  _+1) that are associated with the state 
of the neurons (active or inactive)J 1'2) A given prescription of an energy 
function that describes the neuron interactions, and the way it changes 
when a new pattern is learnt, defines one possible model for associative 
memory with a performance that can be measured through the storage 
capacity of the net and its ability to recognize similar but not equal 
patterns. 

The phase space of a network with N spins is the set of all vertices of 
an N-dimensional hypercube, and a possible configuration of the net is 
represented by an N-dimensional vector S, given by 

S = (S1, 82 ..... SN); Si= 4-1 (1) 

where Si is the state of the ith neuron. Each amount of information 
(a pattern) to be learnt by the net is associated with a given configuration 
of the system. Then, if P of these configurations are chosen, they can be 
represented by P N-dimensional vectors ~ :  

~ = ({~, {~,..-, {~v) (2) 

where ~ = _+1 and # = 1,.,., P. 
The load parameter a is defined as 

P 
= - ( 3 )  

N 

and the critical load parameter a,. is the maximum value of a for which the 
net keeps its associative memory abilities. The degree of similarity between 
two states of the system, say S ~) and S (2), is related to the number of 
aligned neurons and can be measured by the overlap m, defined as 

m = ~  . (4) 
i = l  

Then, if S(1)=S (2), m =  1; if S~t)= - S  (z), m =  - 1 ;  and if S (~) and S (2) are 
uncorrelated, m ~ 0 (of order of l /x/@ ). The overlap m,  of an arbitrary 
initial state S(t = 0) with the # th  stored pattern is 

1 N 

rn~(0) =Ni~=l ~Pigi(o) (5) 
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and the net works as an associative memory if its dynamics (to be defined 
later) is such that, starting from a given, finite value of m, ,  the evolution 
leads to a stable state rnu ,~ 1. This clearly means that S = {~ are minima of 
the energy function E(S) that describes the interactions between the 
neurons. Then a possible definition of the critical toad parameter ec is the 
maximum value of ~ for which the patterns are still minima of E(S). (4"5) 
The best known model for neural networks is the Hopfield model. (24) It 
considers an array of N binary spins (neurons), coupled through synaptic 
connections J~, described by an Ising Hamiltonian: 

H =  - ' 2  i=1 j~i  
(6) 

As the memorized patterns should be minima of H, and they are deter- 
mined by the values of Jo, the learning process of new memories is 
described through convenient modifications of the synaptic connections 
prescribed by learning rules; in the original Hopfield model the synaptic 
connections are given by the generalized Hebb learning rule(24'6): 

l ~ ~;~y (7) 

and they describe satisfactorily an associative memory dynamics provided 
that the net is not overcrowded, i.e., ~ < ~c ~ 0.14 (4) and the learnt patterns 
are not correlated, (4'7) that is, the overlap between any two memories is of 

the order of 1/,~/-N. When ~ > 7c and/or the patterns are correlated the 
retrieving abilities of the net are seriously affected: it forgets the learnt 
patterns (~>~c) or it mixes up similar (correlated) stored patterns. 
Also, spurious states, i.e., minima not learnt, appear together with the 
stored patterns. 

Some attempts to bypass these and other less important difficulties of 
the Hopfield model have been made by introducing different learning 
rules (4'5'8'9) or different energy functions, (1~ but the results are not 
remarkably efficient. In this paper we present in full detail a different 
prescription, which we call the RS model, that has been recently intro- 
ducedJ 12'13) It considers multineuron interactions and has as its origin a 
very simple idea: the energy of a given configuration is proportional to the 
squared Euclidean distances in phase space between the state of the net and 
the stored patterns. The idea of multispin interaction is not new and several 
works in this direction have been published. For example, Gardner (1~ 
proposed a Hamiltonian that is a generalization of the Hopfield model and 
Hebb learning rule considering a monomial of degree p > 2 in the Ising 
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spins: Horn and Usher (14) introduced different weights in the p-monomial 
Hamiltonian to differentiate the several memorized patterns and Abbott 
and Arian (15) considered, instead, polynomials of degree p in the Ising 
spins. In spite of the fact that the consideration of multineuron interactions 
is not original, the way we introduce this feature here is new and the model 
improves qualitatively and quantitatively previous results. Also, in the 
Hopfield model, the energy of a given state S and of its antipode - S  is the 
same: whenever a pattern {~ is a minimum of H, it is the "antipattern" 
- { " .  This is not the case of the RS model. Nevertheless, it is always 
possible to explicitly "teach" the net both patterns {~ and - { " .  This case 
was preliminary discussed in ref. 12. Actually, the two extreme cases, when 
patterns and antipatterns are stored (PAS) or when only the patterns are 
stored (OPS), present strikingly different behaviors and we shall discuss 
them separately. 

In the two following sections we present the model and mean-field 
calculations, and in Section 4 we discuss the results and conclude. 

2. T H E  RS M O D E L  

The Hamiltonian for a net of N spins is (ILls) 

~ ' u  2 H= N ~-N (g,, S i u  ) 
, u = l  1 

(8) 

where P is the number of stored patterns {u = (r r for # = 1 ..... P, and 
S -- ($1,..., SN) is the state of the net, as before. The # th  sum over the spins 
is the squared Euclidean distance in phase space between the state of the 
net S and the /~th pattern. From Eq. (8) it is clear that H(S)>~0 and 
H(S) = 0 if S = {~, for any 1 ~</~ ~< P. This means that, no matter how many 
patterns are stored (how large ~ is), the patterns are always minima of H. 
This suggests that the load limit for this model can be greatly enhanced, in 
agreement with recent numerical simulations/16'17) Another interesting 
feature is that the height of the energy barriers between two patterns 
depends on the distances between them in the phase space, implying that 
the barriers are lower when the patterns are nearer each other in phase 
space, i.e., when they are similar. 

The multineuron interaction feature of Eq. (8) becomes evident when 
it is written as 

N N N t 
H = N  1+ Z J~Si~+ Z J2i2S~Si2+ "'" + Z J~--~ipSi~Si2""Si~ (9) 

i I = 1 il, i2 il ,..., ip 
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where 
( - 1 )  '~ 

J g  - -  t~ ,Ul C~ ~2 
tl " i K  N x ~ -,1 -,2 ...~f~ (10) 

]21 < �9 . . < IlK 

The synaptic connections JY are clearly the strengths of the interactions 
l I �9 . . t K 

between K-adics of neurons, and their laws of formation, Eqs. (10), are 
the equivalent to the Hebb learning rule. Explicitly, the modification in 
the connections when a new pattern is learned can be achieved by the 
following algorithm: 

,)rP + 1 P P + I  
il - . .  ip+ 1 ~ -  J i l  - - .  i e  ~ i ,~ .  1 

j P  = j P  . i e . ~ _  P I P + [  il...ie .. Jil...ip , ~ie 
(11) 

with 
(-- 1) K/2 

~]21 ]21 ~ / 2  ~]2K~2 
J i K . . - i K  N K ~ r 1 6 2  " ' "  IK , ~ i K  ( 1 3 )  

]21 < " " " < ]2KI2 

for a net storing P patterns and the corresponding P antipatterns. The 
differences between Eqs. (9)-(10) and (12)-(13) reflect the diverse 
behaviors of the PAS and OPS configurations. For both cases, when only 
uncorrelated memories are considered, the average of the strengths of 
interactions is zero for all K orders and the dispersion around zero gives 
a first estimate of their relevance in the dynamics of the net. Equations (10) 
and (13) reduce to sums of random walk steps and the ratio of the 
dispersions A J  x is 

A J  K I ( P - K +  1) 1/2 ( N )  1/2 
A J  K-1 K <~ (14) 

for the OPS case, and 

A J  K 1 P - K / 2 +  1. ~< (15) 
A j K -  2 - -  N 2 K/2 \ N 3 J  

and must follow the above order: first j e+~ and last j1. When both 
patterns and antipatterns are considered, the odd-K synaptic connections 
are zero and Eqs. (9) and (10) reduce to 

H = N  1+ 2 2 ... (121 Ji, i2 Si, Si~ + ""  + ~ J~P ~2p SiISi2"'" Si2p 
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for the PAS configuration. In Eq. (15) we consider P patterns and P 
antipatterns. 

Both ratios, Eqs. (14) and (15), goes to zero for finite c~ = PIN and 
N ~  o% i.e., as the order of the synaptic connections increases, the disper- 
sion around zero decreases. This fact allows a cutoff in the expansions (9) 
and (12) in the case of uncorrelated patterns and sufficiently small values 
of ~, yielding a reasonable comparison with biological systems, where 
higher-order multineuron effects are expected to be less frequent. In other 
words, it is reasonable to assume that binary synapses are the leading inter- 
actions and higher-order terms should become less important as the order 
increases and should be considered as correction terms. This is an impor- 
tant feature of the RS model and appears as an advantage of this model 
when compared to other multineuron interaction ones (see, for example, 
refs. 9 and 10). Although the number of k-order synapses increases as N k as 
in other multineuron models, the fact that its dispersion around zero 
decreases means that the amount of information that can be allocated there 
decreases and the performance of the net is robust against defects in higher- 
order terms. Evidence for multineuron interactions in real systems are 
presented, for example, in ref. 18, where axon-axon synapses are described. 
This kind of coupling may change the strength of signals that are traveling 
through the axon coming from the cell body toward dendrite-axon connec- 
tions: these are biological examples of multineuron interactions. 

In particular, for the PAS case, when Eq. (12) is taken up to second 
order of synaptic connections, one gets 

H,,~N 1--~-'~i.ji,=l 

which is, up to constants, the expression for the energy function in the 
Hopfield model, Eqs. (6) and (7): in the limit of low load parameter e and 
uncorrelated patterns, one recovers the Hopfield Hamiltonian. When 0~ 
increases or correlated patterns are considered, the Hopfield model yields 
unsatisfactory results, (4'7) the dispersion around zero of higher K orders 
increases, and more terms in expansion (12) should be taken into account. 
Here we are interested in analyzing the model given by Eq. (8). Truncation 
of the series will be studied elsewhere. 

The expressions for the energy function in both the OPS and PAS 
cases can be rewritten in terms of the overlaps m,  defined in Eq. (5). They 
are 

N~ 

H =  N 1--[ (1 - mu) (17) 
, u ~ l  
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for the OPS network and 

N~ 

H = N  1-I (1 - -m 2) (18) 
/~=1  

for the PAS one. Here P = Ne is the number of stored patterns. From these 
expressions one can study the extensivity of the model and deduce the 
critical load parameter for both cases. We first remark that a macroscopic 
overlap is only possible with a finite number of stored patterns. Consider, 
then, that the net is in such a state that it overlaps macroscopically with 

a finite number n of stored patterns and microscopically (m ..~ 1 / x ~ )  with 
the remaining P - n  memories. The state of the net can then be described 
by the vector m that specifies the overlap of the net with every stored 
pattern: 

1 1 \ 
m = m l ,  m 2 , . . . ,  m , ,  _+ - - ~  ..... + - -  t ( 1 9 )  

, /N  

The energy per neuron for such a state is given by 

--=E ( l _ m l ) ( 1  . . . . . .  m2 ) (1 m.)  1 
N 

, ( l - m 1 ) . .  ( 1 - m , ) e x p  - 

for the OPS case and by 

E (1 m 2 ) ( l - m  2) 
N 

N ~  , (1--rn~)- 

I \ (~N-,~) (l-m:) 1-#) 

�9 (1 - m ] )  e x p ( -  c0 

(20) 

(21) 

for the PAS configuration. The above equations show that the energy per 
neuron for an arbitrary state in both cases is finite and different from zero 
in the thermodynamic limit provided that ~ < oe. Also, in the case of the 
OPS configuration (when only the patterns are stored), it is useful to define 
a central state C in the direction of the sum vector of all stored patterns, 
which presents positive overlaps of the order of 1/.,/-P with all memories. 
The energy per neuron of such a state is given by 

Eops[C]  = 1 (otff),/2 j ~ > exp (22) 
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The critical loading of the net is determined by the behavior of the energy 
per neuron in the thermodynamic limit (N-~ o0): as E / N  is always zero for 
the stored patterns, the load limit at some temperature is determined by the 
lowering to zero of the energy barriers between them, For the PAS case 
this limit is attained only when e ~ cro, i.e., the load capacity increases 
linearly with N, which is the superior limit behavior for any attractor 
neural network where the leading terms are related to binary synapses. (191 
On the other hand, in the OPS configuration, when the number of stored 
patterns aN grows, the barriers between the patterns go to zero and 
E[C] --, O, but there still exists a big basin centered at the central state C; 
the walls of this big basin, which have nonzero energies for finite e, are also 
lowered to zero only when ~ --. o0. The central state may be taken as the 
generalization of the taught patterns: it conserves the information common 
to all memories-- the concept--and this generalization takes place for finite 
values of e. For  zero activity and noncorrelated patterns in OPS nets, there 
is always only one central state (only one memorized concept); for other 
conveniently correlated sets of information many different central states 
may be found, both in PAS or OPS configurations. Up to now we have 
just presented some features of the RS model that can be inferred directly 
from the Hamiltonian (8) or its alternative forms. (12'~3) The next section 
shows the mean-field calculations, performed using the same techniques as 
Amit et aL (4) for the Hopfield model. 

3. M E A N - F I E L D  C A L C U L A T I O N S  

We start by writing the partition function at finite temperature: 

Z =  ~" e x p ( - ~ H )  (23) 
$1 ,..., Sly 

The temperature T, or its inverse /~, is an external noise parameter. The 
sum over the spins Si cannot be performed directly. Hence, we write 

~ e x p ( - ~ H ) =  ~ d m l . . . d m e  
S1 ,..., a N  S1 ' ' ' ' '  S N  ,20 

• 6 m u -  r exp[ - f lH(ml , . . . ,  mp)] 
1 "=  

(24) 
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where H(ml,..., me) is given by Eq. (17) or (18), depending on whether we 
are considering the OPS or the PAS case. We use the identity 

1 N 
x e x p [ f l N t u ( m , - - ~ = ~ , S , ) J  (25, 

in Eq. (24) and the sum over spins can now be performed. The partition 
function now reads 

( flN'~e f dq (26) Z = \2~tij f dm l . . . dm  P . - .d teexp[- f lNf (m, t )]  

where f(m, t) is the free energy per neuron, defined as 

f(m, t )=h(m 1 ..... me) 

/~=1 1 # = I  

with 

in the OPS case and 

P 

h(m, ..... me) = [ I  (1 -rn~) (28) 
u = l  

P 

h(ml ..... me)= ]7[ (1 -m~)  (29) 
/1--I  

for the PAS configuration. 
As f(m, t) remains finite in the thermodynamic limit, the integrals in 

Eq. (26) may be solved through the saddle point method: the thermo- 
dynamic states described by the sets of values m=(ml,. . . ,  me) and t =  
(tl,..., tp) that minimize f(m, t) are the equilibrium configurations of the 
net. Extremalizing Eq. (27), we obtain the following coupled equations for 
the overlaps: 

1 ~ ~ t a n h [ f i  ~ ~ lfI (1- rnv)]  (30) 
/Y/2 ~ X z=' 1 # = 1  v # ~  

in the OPS configuration and 

m;. = ~ if" tanh ~rn ,  
i = 1  1 

f i  (1 - m ~ ) ]  (31) 
v~l.t 
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for the PAS case, and the equations of state that relate t and m are 

and 

P 

t , =  lrI (1-mv) (32) 

P 

l , = 2 m ,  H ( 1 - m  2) (33) 
v r  

for the OPS and PAS nets, respectively. Equations (30) and (31) are sets 
of P coupled transcendental equations whose solutions are not trivial. Up 
to now the averages implied by the sum over spins were not performed; 
they are necessary for the general solution at finite temperatures. 
Nevertheless, for zero temperature and the so-called proper memory solu- 
tion, the model is exactly and easily soluble. Consider a state described by 

m = (1, m 1 2  , m13 , . . .  , m l ?  ) (34) 

where ml~= (l/N)~N= 1 ~l~vi i is the overlap between the memories {1 and 
{v Using Eq. (34) in (30) and (31), one obtains 

m ~ . = ~ l ~ t a n h . =  3 ~  v=a ( l_mv)  ~oo  , mix (35) 

in the OPS configuration and 

1 ~ ~;. [ i ~ :)] ~-~oo (36) m ~ = ~  , tanh 2 / ~  ( 1 - m  , ml~ 
i = 1  v = 2  

for the PAS configuration. This exact solution only reflects the fact that the 
memories are always minima of the energy. When finite temperatures are 
considered, the average value of the overlap m~, for example, is no longer 
one and other terms besides the one in {1 are present in the argument of 
the hyperbolic tangent: in this case we should average over the memories" 
using the replica trick and/or self-average. Nevertheless, as the zero- 
temperature solutions are exact for all values of ~ and any set of stored 
patterns, the fluctuations responsible for phase transitions have a thermal 
origin. The limit in the load parameter for zero temperature is due to the 
lowering of the barriers to zero when a ~ oo and not to the dislocation of 
the minima of energy from the stored patterns to some spurious state, as 
happens to Hopfield-like models. 

The qualitative difference between the behaviors for zero and finite 
values of ~ shown by Hopfield-like models arises from the dislocation of 
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the minima of energy, which requires more sophisticated averaging tech- 
niques such as the replica trick even at T =  0. These different behaviors do 
not happen in our model, at least at T = 0 .  In what follows we present 
separately the calculation for the PAS and OPS cases using the average 
over the memories as by Amit et aL(4): for all values of e, at T = 0  the 
results are exact. Calculations at finite temperatures within the replica trick 
approach are now in progress. 

3.1. Patterns and Antipatterns--The PAS Case 

We shall investigate solutions to Eqs. (3l) that present an identical 
macroscopic overlap m with n memories (and implicitly - m  with the 
respective antimemories) and microscopic overlaps (m ~ 1 / ~ )  with the 
other ones: 

m = (m, m,..., m, 0, O ..... O) (37) 

where we have omitted the overlaps with the antipatterns. Equation (31) 
now reads 

= ; /J m ~ ~ t a n h  2 /?re( I -m2)"  ~ r ~ n  (38) 
i = l  2 = 1  

and for n<#<~P, Eq. (31) is always satisfied because the patterns are 
uncorrelated. Equation (38) can be solved by summing from # = 1 to n and 
reads 

where 

1 N 
' tanh[2flm(1 m2) n l zin] (39) m= E z. 

' i z.  = ~" (40) 
/ / = 1  

The site average can be rewritten as an average over zn with the 
appropriate weights: 

1 n n !  

m = ~ n ~  ~=o kV(n-k) ! z " tanh[2~m(1-m2)" - l z " ]"  (41) 

with z, = n - 2k. 
The plot of the right-hand side (rhs) of Eq. (41) versus m is shown on 

Fig. 1 for different values of n and/~. Clearly the paramagnetic state, m = 0, 
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m 

Fig. 1. Plot of the right-hand side of Eq. (41), rhs(m), for n= 1, 2, and 5. The solid and 
dashed lines refer to fl= 2 and //=0.5, respectively. The straight line intercepts rhs(m) for 
m > 0 only if fl > 1/2. 

is always a solution of Eq. (41). The existence of m r 0 solutions is deter- 
mined by the behavior of the rhs at m = 0: they exist only if/~ > 1/2; i.e., 
T<2. This critical temperature, Tc=2,  is such that if T >  To, the 
paramagnetic solution is the only stable configuration. For the Hopfield 
model, T~ = 1. The difference is due to the factor 1/2 that is absent in 
Eq. (16). The m ~ 0  solutions of Eq. (41) versus/3 for different values of n 
are shown on Fig. 2. The overlaps at the same temperature decrease with 
increasing n and go as 1/x/~ in the T ~ 0 limit, for large n. 

The stability of the solutions is determined by the behavior of 62f, 
calculated for the values of m that extremalize f (m)  [t is a function of m, 
given by Eq. (33)]. One has 

62f= ~ [ 2 ( 1 - m Z ) n - l - m f l ( l - m 2 ) 2 n - 4 D ] ]  r 
# = 1  

P 

+ ~ [2(1-rn2)"]6m~ 
# = n + l  

+ i ~ [ -4m2(  1 - m 2 ) " - 2 - 4 / ~ (  1 -m2 ) 2 " - 4 Dz ] 6 m"6 mv  (42) 
p - - 1  vr  

where 

D1 
1 N 

= - -  ~ sech2[2/3m(1 --m2) "-1 zi] 
nNi=l 
x {(1 +rnZ) 2 n--4m2(zi,) 2 [1--m2(n - 1)]} (43) 
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Fig. 2. 
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The saddle point solutions m versus fl for different values of n. 

and 

1 N 

D2 _ ~ sech 2[ 2flm(1 _ m2) , -1  z i ]  
1 )N i = 1  

• {(1 + m 2 )  2 [ ( z i , ) 2 - n ] - 4 m ~ ( n  - 1)(z~) 2 [ 1 - - m 2 ( n  - 1)]} (44) 

Here, we have used the self-average proper ty  of the memories. The eigen- 
values of the stability matr ix A~v = 02f/Om~, Qmv are 

~1 = 2(1 - m e )  n (45) 

which is P - n  times degenerate; 

22 =2 (1  - m Z )  n-2 (1 + m 2 ) -  4fl(1 - -m2)  2n-4 (D 1 - 0 2 )  (46) 

which is n - 1 times degenerate and does not  exist if n = 1; and finally, 

2 3 = 2 ( 1 - m 2 )  n-2 [ 1 - ( 2 n -  l ) m  2] 

- 4/~(1 - -m2)  2n 4 [ D l - - ( n -  1)D2]  (47) 

which is nondegenerate.  
For  the paramagnet ic  solution, m = 0, the eigenvalues are 

2 1 = 2  

22 = 2 - 4/~ (48) 

23 = 2 - 4fl 
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~15 
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" ~ \  B=5 \ \  

~ rl= 2 

Fig. 3. Plot of 2 2 v e r s u s  fl for different values of n > 1. This eigenvalue is always negative in 
the region fl > 1/2, where the solution m r 0 exists. 

and they are nonnegative only if/3 ~< 1/2, i.e., the paramagnetic phase is 
stable only for T>~ 2. 

When n = 1 and m :~ 0 there are only two different eigenvalues, 21 and 
23, and both are nonnegative in the region /3 7> 1/2, where the solution 
m ~ 0  holds: macroscopic overlaps with only one memory are stable 
solutions if T <  2. If n >~ 2, 22 is always negative for /3 ~> 1/2 and m #0 ,  
going to zero as/3 ~ 1/2, as one can see on Fig. 3, which shows the plot of 
22 versus/3 for different values of n. These unstable solutions are states that 
overlap macroscopically with more than one pattern. One could have 
guessed this result from the form of the Hamiltonian, Eq. (8): equal 
overlaps with two patterns, for example, correspond to a point in the phase 
space halfway between two minima, which is surely a maximum in that 
direction. We have, then, the following scenario: for T < 2  the stable 
symmetric solution overlaps macroscopically with just one memory, and 
for T~> 2 the paramagnetic state is the only stable solution. One could 
investigate other ans/itze for asymmetric solutions, but both the form of the 
Hamiltonian, Eq. (8), and the results of numerical simulations <16~17) lead to 
the conclusion that they should not be stable. 

3.2. Only Pa t te rns - -The  OPS Case 

To visualize the differences in the energy function between the PAS 
and the OPS situations, one must keep in mind that the antipatterns are 
located in a region in phase space that is the mirror image of the region 
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where the patterns are. When the antipatterns are also stored, these two 
regions present similar energy landscapes, but in the OPS case the 
antimemory region comprises very high-energy states and the phase space 
takes the form of an analogue of a multihole bowl in the closed space 
defined by the hypersurface of an N-dimensional hypercube. The greater is 
the number of patterns, the bigger is the difference between these two 
regions and the deeper is the bowl. The patterns are stored inside this big 
basin, whose center lies in the direction C determined by the sum of all 
stored uncorrelated patterns, as previously defined. As P increases, the size 
of the basins of attraction of each memory decreases, enlarging the prob- 
ability that the network stabilizes in a state which is strongly correlated to 
the center of the big bowl. Figure 4 presents a pictorial sketch of the energy 
landscape of the phase space for this case. In the limit P -~ 0% the energy 
of the state in the center of the bowl goes to zero, the basins of attraction 
of each stored pattern merge, and there is only one big basin with a flat, 
zero-energy bottom in the region in phase space which is delimited by a 
ring obtained by linking the points associated to the patterns, centered at 
the direction C. Outside the ring the energy increases monotonically from 
zero to infinity, reaching its maximum value at the point - C .  This picture 
of the phase space agrees with results of numerical simulations, (16) where, 
for the OPS case, the relative size of the individual basins of attraction is 
determined by the absolute number P (for the PAS configuration they are 

p ~ o o  p ~ o o  

EI'I ' ~ I / 
/ I i ~ it i 

I,  i I t / 
J ~  

Fig. 4. Pictorial representation of the energy landscape in the phase space for the OPS case. 
For P < o0 the direction C, determined by the sum of all stored patterns, is a local min imum 
of the Hamiltonian,  with E > 0 .  In the P ~  ~ case the center of the big basin and all the 
stored patterns merge into a unique wide minimum. 

822/69/1-2-26 
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determined by 7- -P /N) .  The origin of the bowl comes from the first 
nontrivial term that appears in expansion (9): 

The central state C clearly minimizes that part of the Hamiltonian. This 
state has equal overlap with all the embedded patterns and is the center of 
the big bowl. In Fig. 5 we present the results of numerical simulations, 
where we measured the fraction of times that the net evolves to a pattern 
or to the central state C when starting from an initial overlap mo with the 
pattern. (16'17) The net should be set to a sufficiently similar initial state in 
order to retrieve a given pattern; otherwise it evolves toward the central 
state C. 

In what follows we investigate the validity and stability of two dif- 
ferent solutions to Eqs. (30), obtain the phase diagram for these ansfitze, 
and interpret the results through the bowl-like shape of the phase space. 
Let us consider a solution of the kind 

m = (m, ~,...., ~) (50)  

This solution reduces to the Mattis state (e = 0) only at T =  0 due to the 
phase space anisotropy originated by the nonstoring of the antipatterns. In 
other words, for T C0  the directions of the thermal fluctuations are not 

1.0 

0.8 

--~ 0~6 

~ 0.4 

0.2 

0.0 
0.0 

fc ~ ' fM  

0.2 0.4 

mo 
0.6 0.8 1.0 

Fig. 5. Plot of numerical simulation results. The curve fM is the fraction of times that the 
memory is recovered from an initial overlap m 0 and fc is the fraction of times that the central 
state is recalled (see text), for network sizes of N= 128 (open symbols) and 512 (black 
symbols). The number of stored patterns is P = 5. 
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equiprobable, because the gradient is higher in the direction opposite to C. 
Equation (30) now reads 

,N [ ] m = ~  ~ ] t a n h f l . :  ~ ] ( 1 - e ) P - ' +  ~ ~ ( 1 - m ) ( 1 - e y  2 

~=2 (51) 

e = ~ 2  ~;tanhfl  ~ ) ( 1 - e )  e 1+ ~ ~ ( l _ m ) ( l _ e y - 2  , v r  
1 # = 2  

Here, too, as in the preceding section, we consider uncorrelated pat- 
i terns and substitute the average over sites i by averages over z p _ t =  

"~P  ~',u i ~'i ~=2 gi and z 1 = qi, with the appropriate weights: 

1 1 e l  (P - l ) !  
m = ~-~ ,~o v =o l'! (--~--- 1-Zi')! 

(1--2/) 

x tanh fl[(1 - 2 / ) ( 1 - e )  e-~ + ( P -  1 - 2 / ' ) ( 1 - m ) ( 1 - e )  e 2] 

1 1 1 P--1 ( P - -  1)! ( 5 2 )  

e - P _ 1 2  p ~ Z l ' ! ( P - l - l ' ) !  ( P - I - 2 1 ' )  
l = 0  l ' = 0  

x tanh fl[(1 - 2 / ) ( I - e )  e - l +  ( P -  1 - 2 / ' ) ( 1 - m ) ( 1 - e )  p-2]  

where 1 - 2 1 = z l  and P -  1 - 2 / ' = Z p _ l .  
The solutions to Eqs. (52) were obtained numerically. As one can see 

on Fig. 6, there are two branches for each value of P, one corresponding 
to the symmetric solution m = e, which exists for every temperature, and 

1.0 

0.8 I I l  ~ j i 

.6 

0.4 

0 2  

0.0 0 ~ ' 1' ' i 

/ m = ~  / : 

i i 

4 $ 

Fig. 6. The saddle point solutions m and e of Eqs. (52) versus fl for several values of P. 
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The critical temperature T<(P) versus P at which the solution m ~ e ceases to exist. 
This temperature is a decreasing function of P. 

another that is associated with the proper memory solution, m ~ 1 and 
e ~ 0, and exists only for temperatures lower than a critical value T<. On 
Fig. 7 one can see the plot of T c as a function of P, in the N-+  oo limit. 
When P =  1 this critical temperature goes to infinity: as the memorized 
pattern is the only minimum in energy, all the thermal fluctuations are 
isotropic around it and the average overlap with the pattern is always finite 
for finite temperatures. Also, the critical temperature Tc(P) is a decreasing 
function of P because the greater the number of stored patterns, the easier 
it is to jump the energy barriers between the memories. On the other 
hand, when T >  To, the only solution corresponds to a configuration that 
fluctuates thermally around the state m = (m, m,..., m), which is the center 
of the bowl, in analogy to the P = 1 case, where the thermal fluctuations 
take place around the stored memory. At T = 0  this solution can be 
obtained analytically and reads 

( e -  1)! 
m - 2 " -  l [ ( ( p  _ 1)/2)! ]2 (53) 

for odd P and 

( P -  1)! 
m = 2 e _  1 ( p / 2 )  ! (P/2 - 1 )! ( 5 4 )  

for even P, and both forms (53) and (54) go as 1/x/-P as P ~ oo. 
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One must now investigate the stability of the solutions in their range 
of validity. We first calculate the stability matrix Au~ = 02f/Qmu ~m~, and 
obtain the eigenvalues. The matrix elements read 

P 

A ~ = - ( 1 - - 6 . ~ )  ~ (1-m~.) 
2 ~ p , v  

P 

)~v~p O~v 

I 1 x 1~ (1--m,)  , V/.z~v (55) 
rl~O,v 

with 

= ~i~i sechZ qi ]-I ( 1 - m ,  (56) 
t 1 q ~  

These matrix elements can be written, for the proper memory solution 
m = (m, e ..... e), and considering the self-averaging of the patterns, as 

A l l  
/~( l_e)p 1 ~ 2  e ~ e~2 . ( P - 2 ) !  

t=or=o~'  o U T ( P - 2 - I " ) !  

x E P -  1 - 2(/' +/ , , )]2 sech2(O1) (57) 

A1F D = A1, u -~ Aul 

= ~ -  1 2p 2 l"! (P----2Zl")! 
l = 0  l ' = 0  / " = 0  

x [ P -  1 - 2(/' + / " )3  

x [(l  - ~)(1 - 2/) + (1 - m ) ( P  - 2 - 2/")] sech2(O1 ) (58) 

~ r # ~ l ,  

AD = A~. 

- ~ l"! ( P - - 2 - / " ) !  l = 0  l ' = 0  l " = 0  

• [ ( l - e ) ( 1 - 2 l ) + ( 1 - m ) ( P - 2 - 2 l " ) ] 2 s e c h 2 ( 0 1 )  (59) 
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again for # r 1, and  finally, 

A F t )  = A ~,v 

l'"v ( P -  3 -1")[  I = 0  1 ' = 0  l " = 0  1 " = 0  

x { ( 1 - e ) 2 + ( 1 - m ) [ P - 2 - 2 ( l ' + l ' ) ]  

x [2(1  - e)(1 - 2/)  + (1 - m)(P - 2 - 2( /" + / " ) ) ]  } s ech2(O2)  

(60) 
for #, v r  1, # r  The functions O~ and 02 are defined as 

0 1 = f l ( 1 - ~ ) P - 2  

x [(1-21)(1-~)+(1-21')(1-m)+(P-2-21")(1-m)] (61) 

02=/3(1 _ ~)1,-2 

x {(1-- 2 / ) (1 -  5) + ( 1 - 2 / ' ) ( I - - m )  

+ (1-m)[P-2-2( l"+l" ' )]}  (62) 

A matrix with such a structure has the following eigenvalues: 

21 = A D -- AFD (63) 

L2 = �89  -}- AD q- (P  - 2) A r o ]  

+ �89 AFD]2+4(P--1)AZFD}I/2 (64) 

~3 = �89  Jl- A D q- ( P -  2) AFD] 
-- �89 AFD]2+4(P--1) az'-~vD,~l/2 (65) 

The eigenvalue 2~ is ( P - 2 )  times degenerate, while 22 and 23 are non- 
degenerate. On Fig. 8 we plot these eigenvalues versus fl, for a fixed P = 5; 
the behavior is analogous for every P > 1. The critical temperature at which 
'~2 goes to zero is the same at which the proper memory solution no longer 
exists, Tc(P). Consequently, in the range of validity of this solution, there 
is no change of sign in any of the eigenvalues of the stability matrix. At 
T = 0  (fl--* oo) the proper memory solution is clearly stable; then we 
conclude that the proper memory solution, when it exists, is always stable. 

To study the stability of the symmetric solution m = (m, m ..... m), it is 
sufficient to replace e by m in Eqs. (57)-(62). In this case, A~I =AD and 
A 1 F  D -= A FD and the eigenvalues read 

fl(1--m)P-2 1 e P! I 1 ] 
21 =1 f f2 i  2-i,~_ol!(P---l)! P-~(P--2I)  2 

x sech2[ f l (1  --  m )  P - 1  ( P - -  21)] (66) 
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/ 

/ 

2 4 6 

Fig. 8. Plot of the eigenvalues of the stability matrix versus fl for the m Ce solution and 
P= 5. Here 21 is always positive, 23 is always negative, and 22 goes to zero as Tgoes to T,(P). 
This behavior is analogous for every value of P. 

which is P -  1 times degenerate and 

1 ~o P! (P_21)2(p_2+ 1) 21=l--P--fl(1--m)P 22 -F' l!(P-l)! 

• s e c h 2 [ f l ( 1 - m )  e ' ( P - 2 / ) ]  (67) 

which is nondegenerate. 
The eigenvalue 2~ is always negative for every value of temperature. 

On the other hand, 2] may change sign, depending on whether P is odd or 
even, as one can see on Fig. 9. In the limit T ~  oo, this solution is clearly 
stable; consequently, for odd P, the symmetric solution m = (m, m ..... m) is 
always stable, while for even P, it may become unstable as T ~ 0  at a 
temperature T s given by the change of signal of 2], which can be obtained 
from Eq. (66): 

Ts~_P2(P-2)! ( l - m )  e 2 
2e [ (p /2 ) ! ]  2 (68) 

where m can be replaced by its T - + 0  limit [Eq. (54)]. On Fig. 10 the 
phase diagram for the OPS nets has been represented in the plane T versus 
P: in region III  just the symmetric overlap solution (disordered state) is 
stable. In region II  both symmetric and proper memory solutions are 
stable, and in region I, the proper memory is stable and the symmetric 
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-2 

P=6 

~ 2  

Fig. 9. Plot of )(1 versus fl for different values of P. This eigenvalue is always positive if P 
is odd and changes sign at T s for even P. 

solution is unstable only for even values of P. Equation (68) defines the 
border between regions I and II. The difference between odd and even P is 
observable only if P is very low ( ~< 10). On the other hand, as P --* ~ such 
that ~ = P I N  remains finite, all basins of attraction of stored patterns merge 
and the only stable phase is III ( T  c ~ 0 as P ~ ~ ) :  the configuration of the 
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Fig. 10. Phase diagram for the OPS net. In reg]on l lI  just the symmetric solution (m = e) is 
stable; in region II both symmetric and proper (m # e) solutions are stable; and in region I, 
the proper memory is stable and the symmetric solution is unstable only for even P. 
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net fluctuates isotropicaUy around the center of the bowl. This behavior is 
also observed in numerical simulations, (16) where we found that the sizes of 
the individual basins of attraction go to zero as P increases, regardless of 
the size of the net N. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The RS model has been presented in full detail and the phase diagram 
has been obtained in mean field. Two extreme situations were considered: 
PAS (patterns and antipatterns) and OPS (only patterns) configurations. 
In both cases the energy function of the net is nonnegative and the patterns 
always present zero energy. As a consequence, the memories are always 
minima of energy regardless of the load parameter c~ and for any set of 
stored patterns. The limit in the load parameter then has the following 
origin: the minima remain at the stored patterns, but the heights of the 
energy barriers are lowered to zero as ~ goes to infinity. An exact proper 
memory solution is then possible at T =  0 for finite values of c~ and any set 
of stored patterns. 

In particular, the PAS configuration presents a very simple phase 
diagram: if T <  T,,=2, only proper memory solutions are stable, while 
if T> Tc=2, only the paramagnetic solutions are stable. When more 
sophisticated averaging processes are utilized, one expects the net to pre- 
sent a qualitatively similar behavior except for the transition temperature, 
which will be renormalized as ~ increases such that Tc ~ 0 as e ~ oe. 

Also, the PAS configuration recovers the Hopfield model in the limit 
of uncorrelated patterns and low load parameter, when multineuron inter- 
action terms may be neglected in the energy function. However, as c~ 
increases and/or correlations between the memories are considered, these 
terms are no longer negligible and must be taken into account. Here we 
have calculated the properties of the solutions of the full model. A study of 
a "truncated model" where only corrections of low-order couplings (4, 6) 
are considered--more adequate to the description of biological systems--is 
now in progress and preliminary results shows that these low-order terms 
are enough to significantly improve the performance of the net as an 
associative memory device. 

On the other hand, the OPS configuration presents interesting features 
because of the anisotropic energy landscape in phase space with a big basin 
of attraction in the phase space, centered at the state C, defined by the 
direction of the vector sum of all stored patterns. The stored patterns also 
present smaller individual basins of attraction inside of the big basin, like 
holes in a bowl. The walls of the big bowl are lowered to zero when �9 goes 
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to infinity, but before that, when the number P of stored patterns increases, 
regardless of the size of the net N the individual basins of attraction merge, 
the big basin presents a flat, zero-energy bottom, and the only stable state 
is the central state C. This can be interpreted as a generalization of the 
learnt patterns: it conserves only the information that is common to all 
memories. Of course, in the case of uncorrelated patterns there is only one 
central state, that is, only one memorized concept. For conveniently 
correlated patterns, for both OPS and PAS configurations, many central 
states may coexist: many concepts which are uncorrelated among them- 
selves may be learnt by the net from adequately chosen examples. The 
behavior of the net around these central states is expected to follow 
qualitatively the OPS, uncorrelated memory configuration. 

In summary, the RS model provides a prescription for an associative 
memory that has the following properties: (i) considers multineuron inter- 
action effects, preserving the binary interaction, (ii)presents, for finite e, 
zero-temperature exact proper memory solutions, (iii)does not exhibit the 
"minima dislocation effect" when increasing the load of the net, and (iv) 
seems to yield a direct route to model associative memories that are able 
to learn and generalize from examples. 
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